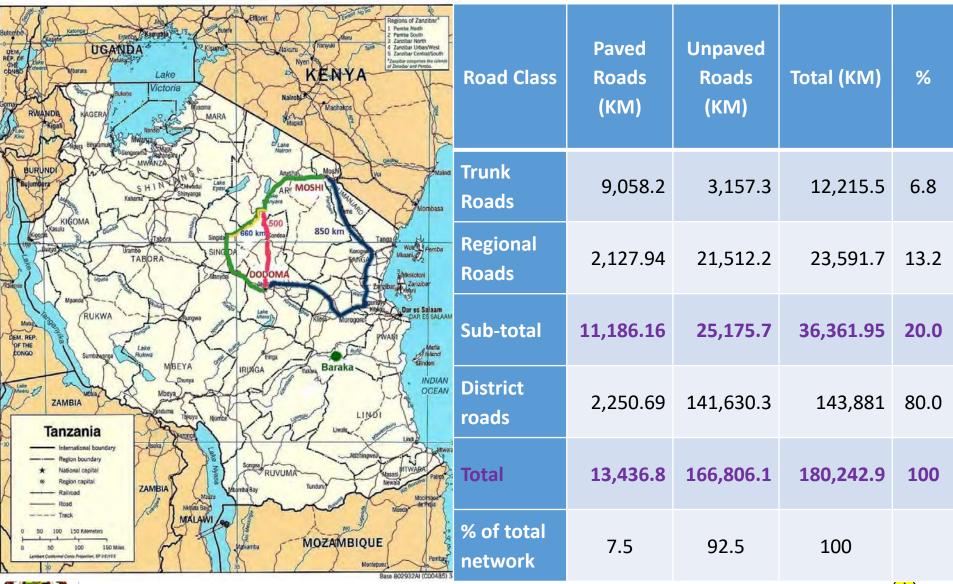
WORKSHOP ON ADAPTATION OF IMPACTS OF CLIMATE CHANGE IN MANAGEMENT OF ROAD ASSETS

INSTITUTE OF BANK OF TANZANIA - MWANZA

25 – 26 JULY, 2022


CLIMATE CHANGE: EVIDENCE AND POLICY IMPLICATIONS ON ROAD INFRASTRUCTURE

Presented by: Mr. Godlove Stephen & Eng. Jonas Makyara

ROAD NETWORK

Why Impact of Climate Change Critical for the Network?

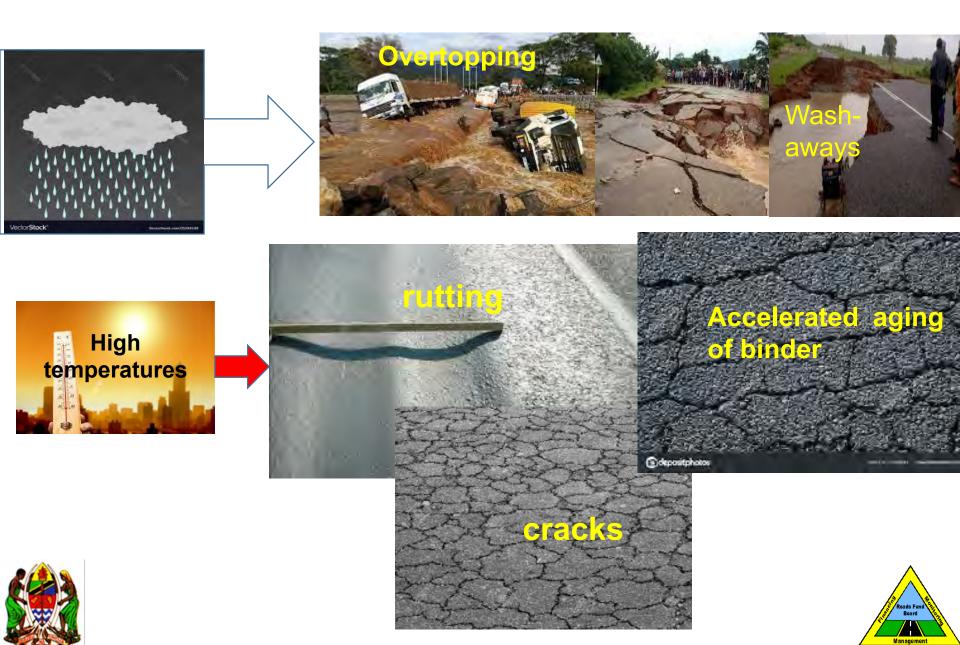
- ✓ The most valuable public asset
 - TZS 21 trilion about 16% of GDP: estimated total depreciated value of the network (2020)

Why Impact of Climate Change Critical for the Network?

Mostly used means of transport:

- Over 80% of cargo use road
- **Over 90% of passangers** •

Large Proportion on Network Vulnerable to Heavy Rains


92% Over of network is gravel and earth

Impact of Climate Change on Road Infrastructure

Evidence of Impact of Climate Change on Road Infrastructure in TZ

Destruction of road pavement and collapse of pipe culvert and structures along Mtowisa – llemba road section. Road closed

Damage of Ntendo Muze Rd Section by landslide (Sumbawanga)

Collapse of Kalumbaleza Box culvert approaches - road closed (Rukwa)

Washed away road embankment at Sindeni along Korogwe – Handeni Road in 2019

Reinstated of the road embankment at Sindeni cost: TZS 907.06 million

Washed away of Kiyogeya cross drainage structure along Morogoro – Dodoma Rd in March 2020

New Kiyegeya Bridge, cost TZS 10.8 billion

The second se

Washed away bridge approaches and settled Chogoali Box culvert in Morogoro

Replacement Bailey Bridge and 377.9 million

TVIV

Kitumba/Mirumba bridge along Katete – Kibaoni (Katavi) Doma Bridge in Morogoro along TANZAM Highway

Sitalike – Kasansa

Impact of high Temperature on bituminous layers

- Forensic investigation
 **conducted (2014) to
 determine causes of
 premature failures of
 bituminous layers.
- Temperature plays a key role in durability and rut resistance of mix.
- Temperatures >45°C decreases shear resistance of an asphalt wearing course due to softening of the binder

 High temperatures under high traffic loading conditions, and if not taken into account, lead to a poor asphalt mix design, and subsequently to severe rutting if wrong types of binder and aggregate skeleton are specified.

**Council for Scientific and Industrial Research, TANROADS and CML

Economic and Social Losses

Increase disception time of road networks; • More critical in case of bridges Shorten rehabilitation life-cycle; Increased costs - repair, replacement and rehabilitation; Huge loss of asset value; and Reduce ejictency of road

hospitals and schools

and access in rural areas

Disruption of supply chains

High input prices

✓ High food prices

Adaptation of Impacts of CC on Rd Infrastructure

Two responses:

- i. Reactive response (inaction)
 - Disadvantage: additional maintenance and repair made necessary by cc

ii. Proactive Adaptation

- involves changes to road design standards and investments in more resilient construction
- Advantages: reduction of financial costs of maintenance and repair/replacement and reduced road disruption
- Decision making considering road disruption effects: compare risks of inaction with benefits of proactive adaptation action

Importance of Scheduled and Adequate Road Maintenance

- Scheduled and adequate maintenance is the first defense to climate risks
- Is the most critical and most efficient way of reducing impact of cc on the road network.
- Delayed maintenance increase chance of failure and thus increases risks.
- Main interventions are:
 - ✓ maintenance of pavements and sealing activities;
 - ✓ regular maintenance of bridges, culverts, and drainage structures;
 - ✓ maintenance and improvement of slope protection works; and
 - ✓ systematic assessments to identify and incrementally address vulnerable and critical road sections.

Some Policy Options for the Adaptation

Policy Overview	Policy Description/Question
Develop appropriate model outputs – e.g. flood models	Integrate climate data and projections, and more information into transport planning
	 Currently the TRRL EA Flood Model (1976) is used. Qn. Is the model still valid? Or its inputs appropriate? Need for review?
Identify inventory assets	Is inventory of road network and structures in place, locations that are vulnerable to cc impacts documented and plans for appropriate interventions in place? Is important information for structures available?
	 What are response options for sedimentation prone areas like Jangwani area, Mkapa bridge (Rufiji) and Mkundi bridge (Dumila)?
Support decision making	Is modelling and adaptation planning tools available to Agencies to help identify vulnerability?
Expand planning timeframes	Possible for Agencies to incorporate effects of longer-term cc into planning processes?
Documentation of cc related events	Are events properly documented? Reasons? Measures taken?

Some Policy Options for the Adaptation contd

Policy Overview	Policy Description/Question
Consider land-use	 Multi-sectoral collaboration to influence land use decisions and avoid inappropriate devt in high-risk areas (up-steam and catchment areas). ✓ Is land-use issue in relation to road transport discussed during Regional Road Board meetings?
	 ✓ Enforce limit of human activities 60 meters from river banks
Develop new design standards	Is it time to consider new design standards and codes to incorporate projected cc?
Update regulations	Consider requirement for cc adaptation screening in EIA?
Plan for emergency preparedness	Are cc strategies to integrate emergency responses into road transport design and operations in place?
Regular and systematic inspection of structures	Is the inspection properly planned and implemented?
Maintenance and repairs stages	Is maintenance plan properly developed at design stage to address concerns associated with accumulation of debris, overtopping, aging etc.? Is there any maintenance policies established?

Conclusion

- ✓ Road infrastructure is the most valuable public asset
- ✓ Is the most used mode of transport for passengers and cargo
- ✓ However, large part of the network (gravel & earth) is susceptible to impact of cc
- ✓ Impact of cc on the network cause huge economic and social losses
 - Loss of asset value
 - Repair and replacement costs
 - Disruption of supply chains and access to social services
 - High input prices
 - High food prices
 - Limited access to schools and hospitals
 - Reduced competitiveness of trade corridors and competitiveness of the economy

Conclusion ... contd

- ✓ There are two responses: reactive response (inaction) vs proactive response (adaptation).
 - Proactive adaptation is most cost-effective option
 - reactive response additional maintenance and repair made necessary by cc
- ✓ Scheduled and adequate maintenance is the first defense to climate risks the most critical and most efficient way of reducing impact of cc on the road network.
- ✓ Important therefore to discuss and agree on appropriate policy options for effective
 PROACTIVE adaptation of impacts of cc on roads infrastructure.

